15 resultados para eutrophication

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese mest. , Gestão da Água e da Costa, 2009, Universidade do Algarve

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese dout., Química, Universidade do Algarve, 2005

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regions of Restricted Exchange (RREs) are an important feature of the European coastline. They are historically preferred sites for human settlement and aquaculture and their ecosystems, and consequent human use, may be at risk from eutrophication. The OAERRE project (EVK3-CT1999-0002 concerns ‘Oceanographic Applications to Eutrophication in Regions of Restricted Exchange’. It began in July 2000, and studies six sites. Four of these sites are fjords: Kongsfjorden (west coast of Spitzbergen); Gullmaren (Skagerrak coast of Sweden); Himmerfj.arden (Baltic coast of Sweden); and the Firth of Clyde (west coast of Scotland). Two are bays sheltered by sand bars: Golfe de Fos (French Mediterranean); and Ria Formosa (Portuguese Algarve). Together they exemplify a range of hydrographic and enrichment conditions. The project aims to understand the physical, biogeochemical and biological processes, and their interactions, that determine the trophic status of these coastal marine RRE through the development of simple screening models to define, predict and assess eutrophication. This paper introduces the sites and describes the component parts of a basic screening model and its application to each site using historical data. The model forms the starting point for the OAERRE project and views an RRE as a well-mixed box, exchanging with the sea at a daily rate E determined by physical processes, and converting nutrient to phytoplankton chlorophyll at a fixed yield q: It thus uses nutrient levels to estimate maximum biomass; these preliminary results are discussed in relation to objective criteria used to assess trophic status. The influence of factors such as grazing and vertical mixing on key parameters in the screening model are further studied using simulations of a complex‘research’ model for the Firth of Clyde. The future development of screening models in general and within OAERRE in particular is discussed. In addition, the paper looks ahead with a broad discussion of progress in the scientific understanding of eutrophication and the legal and socioeconomic issues that need to be taken into account in managing the trophic status of RREs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes some of the needs and problems associated to assessment of coastal and estuarine problems (sediment transport and eutrophication). The development of an integrated system including EO data, local measurements with special emphasis on modeling tools, is presented as a solution for studying and helping decision making on the subject. Two pilot sites for the implementation and the present development status of the integrated system are depicted. This framework was already presented in a recent AO specific for Portugal, which is still under evaluation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assessment of human impact on complex estuarine systems is a multidisciplinary task that is highly demanding in terms of measurements and fieldwork. Nowadays the use of inexpensive and reliably modeling tools can substantially reduce the amount of measurements needed to characterize a system. These tools are also a convenient way to forecast the future evolution of the system and to study the impact of different scenarios of human influence. In this communication a modeling system composed by hydrodynamic, transport and ecological models is used to assess the current trophic state of Sado Estuary (Portugal) and to predict the future trends of the system based on different scenarios of human intervention. Special care is taken to the impact of changing riverine nutrient loads. Sado estuary is a large European estuary that has been considered until now in good trophic conditions with eutrophication appearing only in some isolated spots. Nevertheless in recent years some studies point out that the situation is changing. Sado estuary is a system with strong environmental opposing interests. It hosts a major industrial and urban center around the city of Setúbal and the upper reaches are used to intensive cultures such as rice. On the other hand the estuary possess an important ecological value since it is used by several important species of fish as a spawning and nursery area and it’s wetlands are used by many species of birds as winter shelters. Due to it’s importance the majority of Sado Estuary is considered as Natural Reserve.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação mest., Gestão da Água e da Costa, Universidade do Algarve, 2007

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mest., Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2009

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2007

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, University of Plymouth, Universidad de Cadiz, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação mest., Gestão da água e da costa, Universidade do Algarve, 2007

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese dout., Ciências do Mar (Ecologia Marinha), Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alterations of freshwater flow regimes and increasing eutrophication can lead to alterations in phytoplankton biomass, composition, and growth in estuaries and adjacent coastal waters. Since phytoplankton is the first trophic level of most aquatic foodwebs, these changes can be propagated to other biological compartments, eventually impacting water quality and ecosystem services. However, phytoplankton responses to environmental changes in abiotic variables (e.g., light, nutrients) are additionally controlled by mortality or removal processes (e.g., grazing, horizontal advection and viral lysis). Grazing exerted by microzooplankton, usually dominated by phagotrophic protists, is considered the most relevant phytoplankton mortality factor in most aquatic systems (see Calbet, Landry 2004). In fact, grazing impact of microzooplankton can prevent phytoplankton accumulation in marine systems despite an overall increase in phytoplankton replication rate. By consequence, microzooplankton grazing may minimize problems associated to increased eutrophication and, ultimately, prevent the occurrence of harmful phytoplankton blooms. Thus, microzooplankton grazing on phytoplankton constitutes a key biological process required to understand and predict relationships between hydrological and biological processes in aquatic ecosystems and to use ecosystem properties to improve water quality and enhance ecosystem services, general principles of the Ecohydrology Concept (Zalewski 2000).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alterations of freshwater flow regimes and increasing eutrophication lead to alterations in light availability and nutrient loading into adjacent estuaries and coastal areas. Phytoplankton community respond to these changes in many ways. Harmful phytoplankton blooms, for instance, may be a consequence of changes in nutrient supply, as well as the replacement of some phytoplankton species (like diatoms, that contribute for the development of large fish and shellfish populations) by ohers (like cyanobacteria, that may be toxic and represent an undesirable food source for higher trophic levels). Nutrient and light enrichment experiments allow us to understand and predict the effects of eutrophication on the growth of phytoplankton. This is a fundamental tool in water management issues, since it enables the prediction of changes in the phytoplankton community that may be harmful to the whole ecosystem, and the design of mitigation strategies (Zalewski 2000).